If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-22x+18=0
a = 4.9; b = -22; c = +18;
Δ = b2-4ac
Δ = -222-4·4.9·18
Δ = 131.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-\sqrt{131.2}}{2*4.9}=\frac{22-\sqrt{131.2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+\sqrt{131.2}}{2*4.9}=\frac{22+\sqrt{131.2}}{9.8} $
| (12x-3)=(6x+15) | | 4(x-1)-5(5x+2)=x-14 | | 22-2x+6x=-2(-5x+1) | | 75=3(-6n-) | | 7(5n+5)=2(7n-4)+22n | | 4(3n+3)=2(4n-3)+5 | | -2(3t-5)+5=3t+8 | | 7z+8-5z=8+z+6 | | 5x-3=25x+5 | | 1/2x+1/2=2/3 | | 2.3x=6.41 | | 5(x-4)=3x+24 | | 16x17=34x8 | | 10^x=1210 | | 3.6x-5.4=23.4 | | 2n+5-n-5=6n | | 5x+5+5x+15+7x-6+20x-5=360 | | 21=1/4y+19 | | 2/5x+10=1/4x+40 | | 8.15=e+16 | | 15=18x^2+15x-10 | | 0.5x(4-x)=1 | | 7x-3+13x+1+52=360 | | -1/15b=12 | | X(y)=7200 | | 3(x)=100 | | 11+6y=-31 | | 40w+300=20w+500 | | 2(w+-9)=-8 | | 3.9/3=3x/3 | | 2(x-1)=94 | | 4.25(x)=38.25 |